# GaAs IC 2 Watt High Linearity SPDT Switch DC-2 GHz 

## Features

■ High Linearity (48 dBm IP3 @ 0.9 GHz)
Low Insertion Loss (0.35 dB @ 0.9 GHz)

- Antenna Changeover and T/R Cellular Switch
- Ultra Miniature SOT-6 Lead Package


## Description

The AS128-73 is a FET IC high power SPDT switch in a SOT-6 plastic package. This switch is designed for use where extremely high linearity, low insertion loss and ultraminiature package size are required. It can be controlled with positive, negative or a combination of both voltages. Some standard implementations include antenna changeover, T/R and diversity switching over 2 W . The AS128-73 switch can be used in many analog and digital wireless communication systems including cellular applications.

## SOT-6



Electrical Specifications at $\mathbf{2 5}^{\circ} \mathrm{C}(\mathbf{0}, \mathbf{- 5} \mathbf{V})$

| Parameter $^{1}$ | Frequency $^{2}$ | Min. | Typ. | Max. | Unit |
| :--- | :---: | :---: | :---: | :---: | :---: |
| ${\text { Insertion } \text { Loss }^{3}}$ | $\mathrm{DC}-0.5 \mathrm{GHz}$ |  | 0.3 | 0.4 | dB |
|  | $\mathrm{DC}-1.0 \mathrm{GHz}$ |  | 0.4 | 0.6 | dB |
|  | $\mathrm{DC}-2.0 \mathrm{GHz}$ |  | 1.0 | 1.2 | dB |
| Isolation | $\mathrm{DC}-0.5 \mathrm{GHz}$ | 20 | 23 |  | dB |
|  | $\mathrm{DC}-1.0 \mathrm{GHz}$ | 15 | 17 |  | dB |
|  |  | $\mathrm{DC}-2.0 \mathrm{GHz}$ | 8 | 10 |  |
| VSWR $^{4}$ | $\mathrm{DC}-1.0 \mathrm{GHz}$ |  | $1.4: 1$ | $1.5: 1$ |  |
|  | $\mathrm{DC}-2.0 \mathrm{GHz}$ |  | $1.8: 1$ | $2.0: 1$ |  |

## Operating Characteristics at $25^{\circ} \mathrm{C}(0,-5 \mathrm{~V})$

| Parameter | Condition | Frequency | Min. | Typ. | Max. | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Switching Characteristics ${ }^{5}$ | Rise, Fall (10/90\% or 90/10\% RF) On, Off (50\% CTL to 90/10\% RF) Video Feedthru |  |  | $\begin{gathered} 60 \\ 100 \\ 50 \\ \hline \end{gathered}$ |  | ns ns mV |
| Input Power for 1 dB Compression |  | 0.9 GHz |  | +33 |  | dBm |
| Intermodulation Intercept Point (IP3) | For Two-tone Input Power +10 dBm | 0.9 GHz |  | +48 |  | dBm |
| Control Voltages | $\begin{aligned} & \mathrm{V}_{\text {Low }}=-10.0 \mathrm{~V} \leq \mathrm{V}_{\text {Low }} \leq 0 \mathrm{~V}, 500 \mu \mathrm{~A} \text {, Max. } \\ & \mathrm{V}_{\text {High }}=0 \mathrm{~V} \leq \mathrm{V}_{\text {High }} \leq+10.0 \mathrm{~V}, 500 \mu \mathrm{~A} \text {, Max. } \\ & \text { Differential }=5.0 \mathrm{~V} \leq\left(\mathrm{V}_{\text {High }}-\mathrm{V}_{\text {Low }}\right)<10.0 \mathrm{~V} \end{aligned}$ |  |  |  |  |  |

[^0]
## Typical Performance Data ( $\mathbf{0}, \mathbf{- 5} \mathbf{V}$ )




## VSWR vs. Frequency

## Truth Table

Negative or Differential Voltage Operation ${ }^{1}$

| $\mathbf{V}_{\mathbf{1}}$ | $\mathbf{V}_{\mathbf{2}}$ | $\mathbf{J}_{1}-\mathbf{J}_{\mathbf{2}}$ | $\mathbf{J}_{1}-\mathbf{J}_{3}$ |
| :---: | :---: | :---: | :---: |
| $\mathrm{~V}_{\text {Low }}$ | $\mathrm{V}_{\text {High }}$ | Isolation | Insertion Loss |
| $\mathrm{V}_{\text {High }}$ | $\mathrm{V}_{\text {Low }}$ | Insertion Loss | Isolation |

1. Where supply voltage is limited and for improved high power linearity a larger differential voltage can be obtained by using a positive voltage for $\mathrm{V}_{\text {High }}$ along with a negative voltage for $\mathrm{V}_{\text {Low }}$. Refer to application notes for further information.

## Positive Voltage Operation

| $\mathbf{V}_{\mathbf{1}}$ | $\mathbf{V}_{\mathbf{2}}$ | $\mathbf{J}_{1}-\mathbf{J}_{\mathbf{2}}$ | $\mathbf{J}_{1}-\mathbf{J}_{3}$ |
| :---: | :---: | :---: | :---: |
| 0 | $\mathrm{~V}_{\text {High }}$ | Isolation | Insertion Loss |
| $\mathrm{V}_{\text {High }}$ | 0 | Insertion Loss | Isolation |

$\mathrm{V}_{\text {High }}=+5$ to $+10 \mathrm{~V}\left(\mathrm{~V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{High}} \pm 0.2 \mathrm{~V}\right)$.


Absolute Maximum Ratings

| Characteristic | Value |
| :--- | :---: |
| RF Input Power | 6 W Max. $>900 \mathrm{MHz}$, |
| $0 /-5 \mathrm{~V}$ Control |  |$|$|  | $+0.2 \mathrm{~V},-10 \mathrm{~V}$ |
| :--- | :--- |
| Control Voltage | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ |
| Operating Temperature | $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ |
| Storage Temperature | $25^{\circ} \mathrm{C} / \mathrm{W}$ |
| $\Theta_{\mathrm{JC}}$ |  |

## Pin Out



Negative and Differential Voltages


Positive Operation
DC block components must be supplied externally.
$\mathrm{C}_{\mathrm{BL}}=100 \mathrm{pF}$ for operation $>500 \mathrm{MHz}$.


[^0]:    1. All measurements made in a $50 \Omega$ system, unless otherwise specified.
    2. $\mathrm{DC}=300 \mathrm{kHz}$.
    3. Insertion loss changes by $0.003 \mathrm{~dB} /{ }^{\circ} \mathrm{C}$.
    4. Insertion loss state.
    5. Video feedthru measured with 1 ns risetime pulse and 500 MHz bandwidth.
